
-

What the hell is
Windows CLIP
service?
Philippe Laulheret

-

Philippe
Laulheret

@phLaul

Senior Vulnerability Researcher,
Cisco Talos

Focus: Windows, …

-

WHAT TO EXPECT FROM
THIS TALK?

-

-

WHAT IS CLIPSP?

-

CLIPSP.sys ?

• CLiP = Client License Platform

• SP = System Policy

• Bunch of components:

• Clipc.dll → client

• ClipSVC.dll → RPC backend

• ClipSp.sys → Driver

-

Past Work

• ClipSp:

• KiFilterFiberContext’s github
o https://github.com/KiFilterFiberContext/windows-software-policy

• Keyhole - https://massgrave.dev/blog/keyhole (published after our research)

• Warbird:

• Airbus-seclab’s warbirdvm analysis
o https://github.com/airbus-seclab/warbirdvm

• Alex Ionescu’s EkoParty talk
o http://publications.alex-ionescu.com/EkoParty/EkoParty%202017%20-%20The%20Bird%20that%20killed%20Arbitrary%20Code%20Guard.pdf

• DownWithUp’s blog
o https://downwithup.github.io/blog/post/2023/04/23/post9.html

• CVEs:

• CVE-2023-28273 (@ezrak1e)

• CVE-2023-35362 (@ezrak1e)

https://github.com/KiFilterFiberContext/windows-software-policy
https://github.com/KiFilterFiberContext/windows-software-policy
https://massgrave.dev/blog/keyhole
https://github.com/airbus-seclab/warbirdvm
http://publications.alex-ionescu.com/EkoParty/EkoParty%202017%20-%20The%20Bird%20that%20killed%20Arbitrary%20Code%20Guard.pdf
https://downwithup.github.io/blog/post/2023/04/23/post9.html

-

Why?

• Looking for EoP in windows driver

• Potential for Bug bounty

• Figure out what threat actors tend to do

• Curiosity!

• Importing in IDA looked like…

-

-

-

-

DEOBFUSCATION TIME!

-

Warbird TL;DR;

• Microsoft proprietary Obfuscator

• Many obfuscation options

• Data structures (e.g communication w/ ClipSp)

• Self-modifying code

o Yes! In the kernel

• Syscall

o Decrypt/Re-encrypt

o Payload Execution (!!)

-

-

-

Yuck! (Feistel cipher)

-

How to deal with the Binary Obfuscation?

• Dump the driver while loaded in memory?

• Can’t, code is being re-obfuscated once function is over

• Reimplement the algorithm?

• Sure, but super tedious, multiple functions, weird API calls, etc.

• We’ll see that approach later….

• Lazy+smart move! Leverage existing code:

• Option 1: load the driver and call the function yourself (might fail due to certain kernel api…)

• Option 2: Emulate the code and stub all the code we don’t need

-

Someone already did option 2!

See code at: https://github.com/KiFilterFiberContext/windows-software-policy/blob/master/clipsp-
unpack.py

Tl;dr:

• Use Quiling to emulate the driver + other Windows components necessary to load it

• Quling Framework does a lot of heavy lifting for us

• Slow to run, quick to implement

• Run through the init of clipsp and dump all the Mdl being allocated

• Problem: might miss some code, and pretty messy

• Let’s improve it!

https://github.com/KiFilterFiberContext/windows-software-policy/blob/master/clipsp-unpack.py
https://github.com/KiFilterFiberContext/windows-software-policy/blob/master/clipsp-unpack.py

-

Improving the Deobfuscation script

Idea:

1. Cross reference all the calls to decrypt1 function

2. Backtrack to recover the two arguments of the function call

3. List all the call to decrypt1(arg1, arg2)

4. Use Quiling to execute all the instances of the decryption function

5. Dump the whole memory range, and import that in IDA

-

1. Cross reference calls to decrypt1

-

2. Retrieve rcx and rdx (arg1 and arg2)

-

3. List all the calls

-

4. Run the Qiling script

-

4. Patch the bytes

-

… wait for it …

-

5. Success

-

REVERSING TIME!

-

Reversing Plan

1. Understand how Windows communicate with the driver

2. Makes sense of data structures, logic, etc.

3. Keep an eye for potential vulnerabilities

-

Talking with the Driver
Part 1: the kernel

• Usually, we look for the creation of a device driver, search for IOCTL

• None of that this time

• Instead, driver exports the ClipSpInitialize function

• Takes one parameters that is used to store function pointers

• Ntoskrnl.exe calls it and initialize a global array of callbacks:

-

Talking with the Driver
Part 1: the kernel

• RE Trick: create a struct with the right size (51*sizeof(void*))

o This way you can Xref where the function will be used, rename them, etc

-

Talking with the Driver
Part 2: Kernel-Userland interface

• Xref the callbacks to see how they are called

• ExpQuerySystemInformation (SystemPolicyInformation)

 → ExHandleSPCall2 → ExHandleSPCall2-internal → ExHandleSPCall2Callout

→ Do-SPCall2

• To talk with the driver, issue a NtQuerySystemInformation call with SystemPolicyInformation
class

• commandˍid variable used to decide which callback function to call.

• ….but the whole payload is obfuscated

-

Diagram of payload

-

More Warbird

-

-

Feistel Rounds

• Same functions used for
encryption/decryption

• Order is reversed for decryption

• Function Fn doesn’t have to be
invertible

https://en.wikipedia.org/wiki/Feistel_cipher#/media/File:Feistel_cipher_diagram_en.svg
(CC BY-SA 3.0)

https://en.wikipedia.org/wiki/Feistel_cipher#/media/File:Feistel_cipher_diagram_en.svg
https://creativecommons.org/licenses/by-sa/3.0

-

WARBIRD REGS? WARBIRD KEY?

• Feistel Cipher

• The 0xA0-sized buffer is a list of operation that were executed to encrypt the data

• Tells the other side how to decrypt

• The 8-byte key is fed to the Feistel functions

• The Warbird material in the inner payload is used by the kernel to encrypt the reply

• The Warbird material in the outer payload is used to decrypt

-

Where to get the algorithm / key material?

1. Find a binary that calls the clipsp API and rip it out!

1. Grep for clip/license/system policy strings

2. wlidsvc.dll! DeviceLicenseFunctions::SignHashWithDeviceKey

2. Use hex-ray to copy the encryption/decryption algorithm

3. Keep the same key/warbird material

-

Summary – Communication w/ Driver

1. Using NtQuerySystemInformation and SystemPolicyInformation class

2. Nested/obfuscated payloads with variable [length,data] fields

3. One of the field is a commandˍid, that defines the expected fields

4. Warbird material is passed around for encryption/decryption of payloads

-

So, what does CLIPSP do?

-

TL;DR;

• System Policy / License Value

• NtQueryLicenseValue → ClipSpQueryLicenseValue

• Tons of keys (e.g. notepad.exe: Security-SPP-GenuineLocalStatus)

• EFS

• Encrypted Filesystem

• Keys, headers, etc.

• Device attestation

• Hardware binding

• HMAC/Signature

• Windows Application Licenses (UWP)

• Actual License

• Cryptography material

-

How to find this info?

• ClipSp has no symbols, but other dlls/binaries may…

• Ntoskrnl has tons of symbols, including functions calling ClipSP callbacks…

• Grep for warbird constants to find other binaries calling into ClipSp / SystemPolicy

• Time travel

o Symbols were available ~1 year ago (c.f. keyhole blog)

• Many calls to logging give function / variable names away

• Wrapper around EtwWriteTransfer

• Last two variables are n_entries and an array of EVENT_DATA_DESCRIPTOR

• Ptr to event description w/ function name and variables

-

-

Function Name

Variables

-

See Logs

// See https://github.com/Biswa96/TraceEvent/tree/master

//Enable logging, first command needs Admin privileges

C:\re\tools\TraceEvent.exe -S yolo -g {b4b126de-32fe-4591-9ac5-b0778d79a0e7}
C:\re\tools\TraceEvent.exe -l yolo

// GUID provided when registering ETW context via EtwRegister

https://github.com/Biswa96/TraceEvent/tree/master

-

We RE for a while…

-

-

SystemPolicyInformation – commandˍid

-

License blob

-

License Blob
What does it do?

• Multiple usages:

• Device configuration / device ID

• Application license for app store

o Key material

o Lease

o …

• Automatically installed behind the scene

• On UWP app start if license is expired and connected to the internet

• Error messages:

• License is expired

• Invalid device id

• etc.

-

License Blob
How does it work?

• Installed via commandˍid 100 (SpUpdateLicense)

• Serie of TLV (Tag, Length, Value) entries

• Not documented, XML mapping gives some variable names

• Map: Tag → Internal Index

• Most of the data is loaded into an array

• Signed

• License Type → different signing authorities

• Hardcoded public keys

-

-

License blob
Stored in registry

• HKLN\SYSTEM\CurrentControlSet\Control\{7746D80F-97E0-4E26-9543-26B41FC22F79}

• Key used by Clipsp to store data

• Only accessible to SYSTEM

• PsExec64.exe -s -i regedit

→ Used for running regedit as SYSTEM

-

License blob
Stored in registry

• Subkeys:

• {A25AE4F2-1B96-4CED-8007-AA30E9B1A218} → License data

• {D73E01AC-F5A0-4D80-928B-33C1920C38BA} → ContentKey ?

• {59AEE675-B203-4D61-9A1F-04518A20F359} → AppPolicy1 ?

• {FB9F5B62-B48B-45F5-8586-E514958C92E2} → AppPolicy2 ?

• {221601AB-48C7-4970-B0EC-96E66F578407} → Key timeinfo (expiration/start date)

-

Vulnerabilities

-

Vulnerability 1
Parsing the license…..

-

-

-

Yep! Signature bypass

-

Signature Bypass

• Two problems:

• Can append data after the signature, license blob still valid

• If a tag was already loaded, it can get overwritten if the same tag appears again

• Consequences:

• Tamper with license content

o Legitimate license can be dumped from the registry,

• Change expiration date, encryption keys, hardware bindings, …

• Change device id

• Increased attack surface

-

Expiring notepad…

-

Vulnerability 2
Let’s have a look at the device id….

-

During Device License Install…

-

-

OOB-Read!

-

OOB-Read in Device ID Field

• Two OOB-reads:

• Size field can be read out of bound

o If the data provided for entry[18] is less than 2 bytes.

• If not, the deviceId data can be read out of bound as well

o If size provided is larger than length of entry[18] buffer

-

But wait. There’s more!

-

-

Double Fetch!

-

OOB-Write in Device ID Field

• The size of DeviceId is read multiple times

• One for malloc

• One for memcpy

• Race condition during the double fetch

• Need to read size field OOB

• Swap value between reads

• On success, memcpy could lead to heap overflow (allocatedˍsize < copiedˍsize)

-

Exploitation strategy

1. Create a license file with junk data so it’s large and page-aligned

2. Add a DeviceId field at the end of the license blob

1. Make the size field of DeviceId is OOB

3. Perform heap feng-shui so an object we control lands right after the license

1. Can use CreatePrivateNamespace and CreateBoundaryDescriptor

2. Good edge case: Alloc size % 0x1000 is bigger than 0xFE0

4. Spam Create/Destroy Namespace while installing license

1. Bad luck: BSOD

2. Neutral: nothing

3. Good: OOB Write

-

Debug in Windbg

sxi sse

// log size before calling malloc
ba e 1 clipsp+0x0FEC78 "r $t1 = @ecx; .echo ; g;“

// log size before calling memcpy
ba e 1 clipsp+0xfecaf "r $t2 = @r8d; .echo -------; .if ($t1 < $t2) {.echo ------;
.echo wooooooooooot!!!!!; .printf \"alloc size: %hx, ptr:%p\",$t1, poi(rdi+0x128);
.echo ; .printf \"memcpy size: %hx\", $t2; .echo -------; } .else { g; };"

-

-

POC 2

-

No exploit, why :’(?
Challenges in exploitation

• PagedPool vs NonePaged pool

• Not as much info?

• We need to “control” the first 1-2 bytes of the data, and most of the content thereafter

• Lots of APIs will add header to the data

o PipeAttributes and WNF_STATE_DATA won’t do

• Copy of string tend to be transient

o Might be enough if done right?

• We need to race the malloc/memcpy

• NtCreateTransactionManager is probably too slow as a primitive

• On the plus side, MS doesn’t care and pays bounties…

• Kernel Access violation is enough (https://aka.ms/windowsbugbar)

-

No exploit, why :’(?
Challenges in exploitation

• PagedPool vs NonePaged pool

• Not as much info?

• We need to “control” the first 1-2 bytes of the data, and most of the content thereafter

• Lots of APIs will add header to the data

o PipeAttributes and WNF_STATE_DATA won’t do

• Copy of string tend to be transient

o Might be enough if done right?

• We need to race the malloc/memcpy

• NtCreateTransactionManager is probably too slow as a primitive

• On the plus side, MS doesn’t care and pays bounties…

• Kernel Access violation is enough (https://aka.ms/windowsbugbar)

-

No exploit, why :’(?
Challenges in exploitation

• PagedPool vs NonePaged pool

• Not as much info?

• We need to “control” the first 1-2 bytes of the data, and most of the content thereafter

• Lots of APIs will add header to the data

o PipeAttributes and WNF_STATE_DATA won’t do

• Copy of string tend to be transient

o Might be enough if done right?

• We need to race the malloc/memcpy

• NtCreateTransactionManager is probably too slow as a primitive

• On the plus side, MS doesn’t care and pays bounties…

• Kernel Access violation is enough (https://aka.ms/windowsbugbar)

-

More bugs…

-

Findings!
• Reporting:

• Everything has been reported to Microsoft over 90 days ago

• Fixed in July

• Advisories available on Talos blog

o https://talosintelligence.com/vulnerability_reports

• CVEs:

• CVE-2024-38062

• CVE-2024-38184

• CVE-2024-38185

• CVE-2024-38186

• CVE-2024-38187

-

Next Steps

-

What can be done with this?

• Regular EoP, but also Sandbox escape from LPAC container

• LPAC = Less Privileged Application Container

• Used to isolate browser content pages, parsers, …

• Tampering with License files

• Changing device id

• Changing expiration dates for licenses

• etc.

• Self-modifying kernel code is probably a bad idea…

• See https://downwithup.github.io/blog/post/2023/04/23/post9.html

https://downwithup.github.io/blog/post/2023/04/23/post9.html

-

Remaining attack surface

• EFS (Encrypted File System)

• Other System Policy objects

• Azure Integration ?

• Feature flag in the ntoskrnl, maybe sign of active development

-

Going beyond ClipSP

• Other Warbird Obfuscated Dlls:

• Ci, peauth, …

• PlayReady

• Other surprising attack surface via NtQuerySystemInformation

• Ex: SystemControlFlowTransition (syscall for Warbird)

o CVE-2024-20698

-

CONCLUSION

-

Conclusion

• Obfuscation can hide trivial bugs

• Makes it an interesting attack surface to look at from offensive perspective

• Tradeoff with how difficult it is to deobfuscate

• Elevation of privileges are a key aspect of modern exploitation

-

THANKS!

Questions/comments:

 @phLaul

-

blog.talosintelligence.com @talossecurityblog.talosintelligence.com @talossecurity

-

blog.talosintelligence.com @talossecurityblog.talosintelligence.com @talossecurity

-

	Slide 1
	Slide 2
	Slide 3: WHAT TO EXPECT FROM THIS TALK?
	Slide 4
	Slide 5: WHAT IS CLIPSP?
	Slide 6: CLIPSP.sys ?
	Slide 7: Past Work
	Slide 8: Why?
	Slide 9
	Slide 10
	Slide 11
	Slide 12: DEOBFUSCATION TIME!
	Slide 13: Warbird TL;DR;
	Slide 14
	Slide 15
	Slide 17: Yuck! (Feistel cipher)
	Slide 18: How to deal with the Binary Obfuscation?
	Slide 19: Someone already did option 2!
	Slide 20: Improving the Deobfuscation script
	Slide 21: 1. Cross reference calls to decrypt1
	Slide 22: 2. Retrieve rcx and rdx (arg1 and arg2)
	Slide 23: 3. List all the calls
	Slide 24: 4. Run the Qiling script
	Slide 25: 4. Patch the bytes
	Slide 26: … wait for it …
	Slide 27: 5. Success
	Slide 28: REVERSING TIME!
	Slide 29: Reversing Plan
	Slide 30: Talking with the Driver
	Slide 31: Talking with the Driver
	Slide 32: Talking with the Driver
	Slide 33: Diagram of payload
	Slide 37: More Warbird
	Slide 38
	Slide 39: Feistel Rounds
	Slide 40: WARBIRD REGS? WARBIRD KEY?
	Slide 41: Where to get the algorithm / key material?
	Slide 42: Summary – Communication w/ Driver
	Slide 43: So, what does CLIPSP do?
	Slide 44: TL;DR;
	Slide 45: How to find this info?
	Slide 46
	Slide 47
	Slide 48: See Logs
	Slide 49: We RE for a while…
	Slide 50
	Slide 51: SystemPolicyInformation – commandˍid
	Slide 52: License blob
	Slide 53: License Blob
	Slide 54: License Blob
	Slide 55
	Slide 56: License blob
	Slide 57: License blob
	Slide 58: Vulnerabilities
	Slide 59: Vulnerability 1
	Slide 60
	Slide 61
	Slide 62: Yep! Signature bypass
	Slide 63: Signature Bypass
	Slide 64: Expiring notepad…
	Slide 65: Vulnerability 2
	Slide 66: During Device License Install…
	Slide 67
	Slide 68: OOB-Read!
	Slide 69: OOB-Read in Device ID Field
	Slide 70: But wait. There’s more!
	Slide 71
	Slide 72: Double Fetch!
	Slide 73: OOB-Write in Device ID Field
	Slide 74: Exploitation strategy
	Slide 75: Debug in Windbg
	Slide 76
	Slide 77: POC 2
	Slide 78: No exploit, why :’(?
	Slide 79: No exploit, why :’(?
	Slide 80: No exploit, why :’(?
	Slide 81: More bugs…
	Slide 82: Findings!
	Slide 83: Next Steps
	Slide 84: What can be done with this?
	Slide 85: Remaining attack surface
	Slide 86: Going beyond ClipSP
	Slide 87: CONCLUSION
	Slide 88: Conclusion
	Slide 89: THANKS!
	Slide 90
	Slide 91
	Slide 92

